Riaghailtean indeacsan agus surdan
Faic an clàr gu h-ìosal airson geàrr-iomradh dhe na riaghailtean:
Riaghailtean shurdan/indeacsan | |
1 | \(\sqrt a \times \sqrt a = a\) |
2 | \(\sqrt {ab} = \sqrt a \times \sqrt b\) |
3 | \(\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }}\) |
4 | \({a^m} \times {a^n} = {a^{m + n}}\) |
5 | \({a^m} \div {a^n} = {a^{m - n}}\) |
6 | \({a^0} = 1\) |
7 | \({({a^m})^n} = {a^{m \times n}}\) |
8 | \({a^{ - n}} = \frac{1}{{{a^n}}}\) |
9 | \({a^{\frac{1}{n}}} = \sqrt[n]{a}\) |
10 | \({a^{\frac{m}{n}}} = {(\sqrt[n]{a})^m}\) |
1 | |
Riaghailtean shurdan/indeacsan | \(\sqrt a \times \sqrt a = a\) |
2 | |
Riaghailtean shurdan/indeacsan | \(\sqrt {ab} = \sqrt a \times \sqrt b\) |
3 | |
Riaghailtean shurdan/indeacsan | \(\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }}\) |
4 | |
Riaghailtean shurdan/indeacsan | \({a^m} \times {a^n} = {a^{m + n}}\) |
5 | |
Riaghailtean shurdan/indeacsan | \({a^m} \div {a^n} = {a^{m - n}}\) |
6 | |
Riaghailtean shurdan/indeacsan | \({a^0} = 1\) |
7 | |
Riaghailtean shurdan/indeacsan | \({({a^m})^n} = {a^{m \times n}}\) |
8 | |
Riaghailtean shurdan/indeacsan | \({a^{ - n}} = \frac{1}{{{a^n}}}\) |
9 | |
Riaghailtean shurdan/indeacsan | \({a^{\frac{1}{n}}} = \sqrt[n]{a}\) |
10 | |
Riaghailtean shurdan/indeacsan | \({a^{\frac{m}{n}}} = {(\sqrt[n]{a})^m}\) |
Obrachadh a-mach leis an riochd shaidheansail
Feuch a' cheist gu h-ìosal.
Question
Tha 5 x 109 cealla fala dearg ann an 1 ml fala.
Obraich a-mach san riochd shaidheansail an àireamh de cheallan fala dearga a th' ann an 3.25 liotairean fala.
\(3.25\,liotairean = 3250\,ml = 3.25 \times {10^3}\)
Mar sin tha e air obrachadh a-mach mar:
\((3.25 \times {10^3}) \times (5 \times {10^9})\)
\(= 3.25 \times 5 \times {10^3} \times {10^9}\)
\(= 16.25 \times {10^{3 + 9}}\)
\(= 16.25 \times {10^{12}}\)
Chan e seo an riochd saidheansail ceart oir chan eil 16.25 eadar 0 agus 10
\(=1.625\times 10^{1}\times 10^{12}\)
\(= 1.625 \times {10^{13}}\) cealla fala